Российские исследователи выяснили, что скорость и эффективность работы так называемых генеративных потоковых сетей (GFlowNets), способных ускорять разработку новых лекарств и решать задачи комбинаторной оптимизации, можно значительным образом повысить, если применять для их настройки классические алгоритмы обучения с подкреплением. Об этом сообщила пресс-служба НИУ ВШЭ.
"Мы показали, что классические алгоритмы обучения с подкреплением работают сравнимо и даже эффективнее известных современных подходов, разработанных специально для обучения этих моделей. Так, в рамках задачи моделирования молекул лекарств с заданными свойствами за время обучения нашего метода было сгенерировано на 30% больше высококачественных молекул, чем у существующих методов", - пояснил научный руководитель Центра искусственного интеллекта НИУ ВШЭ Алексей Наумов, чьи слова приводит пресс-служба вуза.